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Abstract: In this paper we investigate the sensitivity evolution in estimating 
the unknown quantum Hamiltonian parameters. We apply Kullback-Liebler 
(KL) divergence to quantify the difference of quantum measurements between 
deviated and authentic parameter values. From explicit formula for the Fisher 
information matrix (FIM), we can calculate the second order approximation of 
the KL divergence. For several quantum mechanical systems, we use this 
analytical method to investigate the sensitivity evolution of estimating the 
underlying unknown parameters. We find that in all these examples the FIM is 
divergent, which indicates that it is possible to design an unbiased estimator 
that yields the unknown parameters precisely. 
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1 Introduction 

In recent years, quantum information processing has made considerably progresses 
(Nielsen and Chuang, 2001). In many of these applications of quantum technologies, it is 
a prerequisite condition to know the mathematical model of the physical systems. 
Because the dynamics of a closed quantum system is dictated by its Hamiltonian, it is of 
particular interest to identify the real Hamiltonian that conforms to physical theory and 
experimental data. 

For many quantum mechanical systems, people may have a prior knowledge about 
the structure of the Hamiltonian from physical mechanisms and what need to be 
identified are the unknown parameters within the Hamiltonian. In recent years, many 
researchers worked on the Hamiltonian parameter estimation and obtained useful results 
(Burgarth and Yuasa, 2012; Zhang and Sarovar, 2014). For a quantum mechanical 
system, we can repeatedly prepare the system at the same initial states and then perform 
the measurements after the system evolves for certain time. Different from the classical 
systems, the state of a quantum system will collapse after measurement. The result of 
quantum measurement is a probability distribution and we can repeat the independent 
measurement for many times to obtain an approximation of this probability distribution. 
The identification task is to estimate the Hamiltonian parameters from these probability 
distributions measured at different time instants. 

In this paper, we are interested in the sensitivity in estimating the Hamiltonian 
parameters. In a typical parameter estimation setting, one solves for the unknown system 
parameters from some given input/output data. For the same input signal, if a small 
variation about the parameter leads to a relatively large change in the output data, the 
parameter sensitivity is large and it facilitates better estimation. On the contrary, if 
variations in the parameters result in little or no change in the output data, it will be very 
hard to precisely determine the unknown parameter. 

Since the results of quantum measurements are probability distributions, we can use 
Kullback-Liebler (KL) divergence to quantify the difference between the nominal 
measurement distribution and the perturbed one (Cover and Thomas, 1991). We then 
expand this divergence to the second order and obtain a quadratic form in terms of 
perturbations, which naturally introduces the Fisher information matrix (FIM) (Sarovar  
et al., 2017). For closed quantum system, the FIM can be derived in an analytical manner. 
The main contribution of this work is to explicitly investigate the parameter estimation 
sensitivity evolution in quantum Hamiltonian estimation. We investigate several common 
physical examples and find that in all these examples the FIM are divergent. Because the 
Cramer-Rao bound (Cover and Thomas, 1991) states that the covariance of an unbiased 
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estimated is lower bounded by the inverse of the FIM divided by the sample number, this 
implies that it is possible to estimate the parameters precisely. 

2 Quantum measurements 

In the following, we consider to analyse the sensitivity of identifying the unknown 
Hamiltonian parameters of a quantum mechanical system. We assume that the dimension 
of the quantum system is finite and known and the dynamical process can be prepared at 
some initial states. Further, we assume that the unknown process is governed by unitary 
evolution, that is, the system has no interaction with its environment. 

We express a Hamiltonian that dictates the evolution of a quantum dynamical process 
as 

1

M

i i
i

H λ X  (1) 

where λi are the unknown parameters and Xi are known Hermitian operators. For unitary 
evolutions, the quantum process is defined on SU(N), the special unitary lie group of 
unitary matrices with unity determinant. Correspondingly, iH  su(N), i.e., the Lie 
algebra consisting of all the N × N skew-Hermitian matrices. In general, {Xn} can be 
chosen from an orthonormal basis for su(N), where the Hilbert-Schmidt inner product is 

defined as Xm, Xn  ≡ tr(X†
m Xn). For example, 1 2

2
i σ σ  form a basis for su(4), where σ , 

σ  can be Pauli matrices σx, σy, σz, or the identity matrix I and superscripts label the 
qubits. Each element Xk can be considered as an observable for the system since it is 
Hermitian. 

For a quantum system, assume that we can measure an observable O as a function of 
time. A physically motivated example of such a scenario is where local observables of a 
collection of spins are measured. We decompose this observable into orthogonal 
projectors representing individual measurement results: 

1

M

m m
m

O θ P  (2) 

where PmPn = Pmδmn. 
Denote the initial state of the quantum system as φ0. When the system evolution is 

governed by H(λ0), with λ0 denoting the nominal values of the system parameters, the 
quantum state at time instant t is given by e−iHtφ0. Then if we measure the system with the 
observable O at time t, the result is a probability distribution 

†0
0 0tr iHt iht

m mp λ P e φ φ e  (3) 

where m = 1, …, M. 
Assume that we prepare the quantum system for many times and perform a series of 

independent measurements at different time instants. With sufficiently many 
measurements, we can obtain approximations of the measurement probability 
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distributions at these time instants. We thus estimate the quantum Hamiltonian parameter 
from these series of probability distributions. 

3 Quantifying parameter estimation sensitivity 

In our previous work (Zhang and Sarovar, 2014), we have developed an algorithm to 
estimate the parameters. However, in that work, we used only the mean values of the 
probability distributions at different time instants. Since the quantum measurement 
results are given by a series of probability distributions, dealing with these distributions 
directly will give us more useful information. 

In parameter estimation, we are interested in studying the sensitivity of a particular 
setup. Given a physical system, we want the input/output data sensitive to the underlying 
Hamiltonian parameters so that the parameters can be better estimated. Specifically, 
when a parameter λ is perturbed by a small amount ∆λ around its authentic value λ0, the 
measurement probability distribution will change from p(λ0) to p(λ) correspondingly. If a 
small change in the parameter space results in a large change in the measurement 
probabilities, this means the parameter can be precisely estimated. Note that this is indeed 
a converse problem of the reliability of analog quantum simulation (AQS) we 
investigated in Sarovar et al. (2017). In the AQS case, we want the measurement results 
as insensitive as possible to the underlying parameters so that the parameter uncertainties 
will not have a significant influence in the final simulation results. 

Similar to Sarovar et al. (2017), we use the KL divergence to measure the difference 
between the measurement probability distributions p(λ) and p(λ0): 

0
KL 0

( )( ) ( ) log m
m m m

mm

p λD p λ p λ p λ
p λ

 (4) 

Assuming that the deviation in parameters from the nominal ∆λ = λ − λ0 is small, we 
expand the KL divergence to the second order to obtain 

30 0
KL

1( )
2

T
m mD p λ p λ λ F λ λ λO  (5) 

The first order term vanishes because the sum of a probability distribution is unity. The 
matrix F is nothing but the FIM for the model and its elements are given by: 

0

0

0

2
0 0

1

1

( )

log ( ) log ( )( )

1 ( ) ( )
( )

ij KL
j i λ λ

M
m m

m
i jm λ λ

M
m m

m i jm λ λ

F λ D p λ p λ
λ λ

p λ p λp λ
λ λ

p λ p λ
p λ λ λ

 (6) 

Note that the FIM is the unique Riemannian metric for the space of probability 
distributions under some mild conditions (Campbell, 1985) and therefore we can choose 
any f-divergence and the results are all the same. 
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Our measurement scheme is to prepare the system and then measure at a specific time 
instant for many times to get the probability distribution at that time instant. Suppose that 
at time instant tk, measuring the observable O results in a probability distribution k

mp  for 
the measurement results. Combining it with all the probability distributions measured at 
previous time instants t = t1, t2,…, tk − 1, we obtain the joint probability distribution for the 
measurement results at these time instants. As time evolves, we get a time series of 
instant FIMs as well as a cumulative FIM up to certain time instant with respect to λ0. In 
the independent measurements with re-preparation case, all the measurements data at 
different time instants are independent. Therefore, the cumulative FIM based on the 
measured distribution 1 2, , , k

m m mp p p  is the sum of the FIMs from all the previous 
instants. 

We treat the sensitivity of parameter estimation from the spectral analysis of the FIM 
associated with quantum measurement results. Consider a set of eigenvalues k and 
eigenvectors vk of F, with k indexing the eigenvalues in descending order. Since F is a 
symmetric matrix, we have 

†

1

K

k k k
k

F ζ υ υ  (7) 

Then the changes in the measurement probability distributions over a time duration by 
the perturbation in the parameter λ can be approximated to the second order by 

2†

1 2

K
k

k
k

ζ υ λ  (8) 

This expression quantifies the sensitivity of quantum measurement results to the 
Hamiltonian parameters around the authentic value λ0. The magnitude of an eigenvalue 
indicates its influence on the measurement probability distribution and the eigenvector 
implies the influential combination of parameters. 

One important result in estimation theory is Cramer-Rao bound (Cover and Thomas, 
1991): 

11Cov ( ) ( ),λT X F λ
N

 (9) 

where Tλ (X) is an unbiased estimator of λ based on the data X and N is the number of 
samples. The inverse of the FIM thus gives a lower bound on the covariance matrices of 
all the possible unbiased estimators. 

4 Analytical computation of FIM 

The cumulative FIM up to the time instant tk is the sum of all the instant FIMs at previous 
measured time instants. We now calculate the instant FIM in an analytical manner and 
then the cumulative FIM can be obtained immediately. 
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From equation (6), it is critical to calculate the partial derivatives ( ) ,m

i

p λ
λ

 where 

pm(λ) is given in equation (3). Then 

†
0 0

† †
0 00 0

( ) tr

tr tr

m iHt iHt
m

i i

iHt iHt
iHt iHt

m m
i i

p λ P e φ φ e
λ λ

e eP φ φ e P e φ φ
λ λ

 (10) 

Figure 1 A periodic Ising ring with transverse field (see online version for colours) 

 

In order to calculate ,
iHt

i

e
λ

 we utilise equation (78) in Najfeld and Havel (1995) to 

obtain: 
/2

/2 /2
/2

iHt t
iHt iHτ iHτ iHt

k
tk

e e e H e dτe
λ

 (11) 

Now we diagonalise the Hamiltonian as 
†H T T  

where T is a unitary matrix of eigenvectors and  = diag{γ1, γ2, …} is a diagonal matrix 
of eigenvalues. Substituting this decomposition into equation (11), we get 

/2
/2 † /2 †

/2
( )

iHt t
iHt i t

k
tk

e Te T H T τ dτe T
λ

 

where  denotes the Hadamard product, i.e., element-wise product and Θpq(τ) =  
ei(γq − γp)τ is the pq-th element of Θ. The τ dependence is entirely in this matrix and 
therefore we can evaluate this integral to yield: 

/2 † /2 † ,
iHt

i t i t
k

k

e Te T H T e T
λ

 

where  is a matrix with elements: 

sin / 2
, ;

/ 2
,                        .

q p
p q

q ppq

p q

γ γ t
γ γ

γ γ
t γ γ
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Inserting this expression into equation (10) allows us to evaluate the derivatives required 
to calculate the FIM for thermal states in a manner that is numerically stable. 

5 Simulation results 

The analytical method to compute the FIM developed in the previous section enables us 
to investigate parameter estimation problems in several quantum mechanical systems. 

First consider an Ising ring with transverse field as shown in Figure 1. The 
Hamiltonian is given by 

1

1 1

n n
j j j

j x j z z
j j

H B σ J σ σ  (12) 

where jσ  is a Pauli operator with   {x, y, z} at site j. For the ease of notation, we let 
1 1 .n

z zσ σ  The observable to be measured is 1 .xσ  It is clear that this observable has only 
two distinct eigenvalues 1 and −1. The instant FIM can be written as 

1

2

1
[ ] 1

T

T

υ
pF υ υ

υ
p

 (13) 

and it has only one non-zero eigenvalue vTv/(p1p2) with the associated eigenvector v. 
Furthermore, since the FIM at each time instant is semidefinite positive, the cumulative 
FIM is also semidefinite positive. 

Figure 2 Eigenvalues of the FIM for a periodic Ising ring with transverse field (see online 
version for colours) 

 

We conduct numerical simulation for a five-qubit ring and show the results in  
Figure 2. The top plot is the single eigenvalue of the instant FIMs as a function of time 
and we observe that the eigenvalue fluctuates. In the bottom plot of Figure 2, we show 
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the eigenvalues of the cumulative FIM. It can be observed that the eigenvalues of the 
cumulative FIM are monotonically increasing as time progresses. 

Figure 3 Conditional number of the cumulative FIM (see online version for colours) 

 

We also show the condition number of the cumulative FIM in Figure 3. It becomes stable 
gradually, which implies that the FIM has full rank and is invertible. From numerical 
simulations, the cumulative FIM is divergent and thus the right hand side of equation (9) 
becomes 0. This indicates that the lower bound for the estimator variance can approach 0 
and a perfect estimator might be possible. 

Figure 4 A 1D Ising chain with transverse field (see online version for colours) 

 

Next consider a 1D Ising chain with transverse field as shown in Figure 4. The 
Hamiltonian is given by 

1
1

1 1

n n
j j j

j x j z z
j j

H B σ J σ σ  (14) 

and we again measure 1 .xσ  
The eigenvalues of the instant and cumulative FIMs are shown in Figure 5. As we can 

see, changing the boundary condition from periodic to open-end leads to different 
eigenvalues; however, the general behaviors of the eigenvalues as time evolves are 
similar: eigenvalues of instant FIMs go up and down whereas eigenvalues of cumulative 
FIM are monotonically increasing. The eigenvalue of the cumulative FIM is also 
divergent, which yields the Cramer-Rao bound as 0. 
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Figure 5 Eigenvalues of the FIM for a 1D Ising chain with transverse field (see online version  
for colours) 

 

Finally we consider a 2D Ising ladder with transverse field and open-end boundary 
condition as shown in Figure 6. The Hamiltonian is given by 

2 1
1 1

1 2
1 1

1

3
1

n n
j j j n j n j

j x j z z j z z
j j

n
j n j

j z z
j

H B σ J σ σ J σ σ

J σ σ

 (15) 

Figure 6 A 2D Ising ladder with transverse field (see online version for colours) 

 

and the observable is again the local operator 1 .xσ  The numerical simulation results for a 
six-qubit ladder are shown in Figure 7. 

We observe that the behaviour of the eigenvalues of instant and cumulative FIMs are 
still similar to the previous two cases. From these numerical examinations, the 
eigenvalues of the cumulative FIMs are all convergent, which implies the possible 
existence of an unbiased estimator that can identify the parameters exactly. 
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Figure 7 Eigenvalues of the FIM for a 2D Ising ladder with transverse field (see online version 
for colours) 

 

6 Conclusions 

In this paper we used the FIM to study the sensitivity evolution of estimating 
Hamiltonian parameters in quantum mechanical systems. Numerical simulations suggest 
that the FIM are divergent, which indicates that it is potentially possible to design an 
unbiased estimator that yields the unknown parameters precisely. Future work includes to 
study the theoretical problem whether the divergence of the FIM is ubiquitous for all 
quantum system, as well as to develop unbiased and efficient estimators for Hamiltonian 
parameter estimation. 
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